
Data Acquisition: Building an
MTConnect Adapter

• Dave Wickelhaus
• Xiqun Wang, Ph.D.
• TechSolve, Inc.

• Founding Sponsor of MTConnect Institute
• NIST Manufacturing Extension Partnership (MEP) Affiliate
• Ohio Edison Technology Center
• Provider of Viz Suite of MTConnect®-compatible Adapters and Asset

Visualization Software
• Advanced Machining Lab: Machining R&D, Problem Solving, Part Cost Reduction

and Comparative Testing
• Dave Wickelhaus, Machining Systems Engineer
• Xiqun Wang Ph.D, Machining Research Engineer

www.TechSolve.org

Agenda
• Overview of MTConnect
• Adapter Basics
• Adapter Open Source Frameworks for

MTConnect
• Building an Adapter using the C# Framework
• Lab – Build an Adapter for MTConnect

MTConnect
Standard

MTConnect® Overview

Agent

Adapter

CNC
Machine

MTConnect App

D
at

a
Fl

ow

Focus of
the workshop

What is an Adapter?
• The Adapter is the liaison between the machine

control (or other devices such as sensors) and the
MTConnect Agent

• The Adapter has two primary functions:
– get information about the device’s current state such

as Controller Mode, Axis position, etc…
– send the data to the MTConnect Agent

• The Adapter can be a simple software
application or a combination of software and
hardware
– Hardware and Software examples:
 a device that plugs into the CNC I/O bus
 data acquisition unit that picks up signals from CNC’s

relay points

• Adapters may also be used to collect data
from sensors such as Accelerometers or
Human Input Devices (HIDs) that supply
supplemental information relevant to the
operation of the machine

Device - Adapter Communication

• Machine Tools, PLCs, Sensors and Human Input Devices expose

various interfaces
• Connection can be over TCP/IP, RS-232, RS-485, etc. or the Adapter

can be embedded in the CNC’s OS
• Can be different for each Manufacturer’s control, vintage and

available options

Device (CNC) Adapter Data
Query

Device - Adapter Communication

• In the case of some vintage CNCs, there may not be a way to get

data directly from the CNC in which case it will require some
combination of hardware and software

• Close to 90% of the Adapter development time will be spent
figuring out what data is required and how to access the data

Device (CNC) Adapter Data
Query

Adapter - Agent Communication

• Adapters use Sockets to communicate

– a Socket is the generic term for an inter-process connection

• The TCP/IP protocol is used to communicate between the
Adapter and Agent

Adapter Agent Data
Ping-Pong

Agent Adapter Protocol

• Heartbeats
– *PING responded to with *PONG <frequency>
– Verifies the connection is open
– If the Adapter or the machine becomes unresponsive, the Agent

can disconnect
– Gracefully handles network issues
– Heartbeats are optional (but highly recommended)

Adapter Agent Data
Ping-Pong

• The data is simple
− Timestamp|name|value|name|value
− Timestamp|name|level|code|native|severity|qualifier|text
− Time Series and Assets are described in the Addendum

Data For The Open Source Agent
2015-04-15T00:00:00.000000|power|ON|execution|ACTIVE|line|412|Xact|1.1761875153|Yact|0.1766618937
|Zact|-0.1000000015|Xcom|-1.1750614363|Ycom|0.1837732914|Zcom|-0.1000000000
|spindle_speed|3400.0000000000|path_feedrate|0.4000000000|program|flange_cam.ngc|mode|AUTOMATIC
|block|x-1.168526 y0.225046|feed_ovr|100.0000000000|SspeedOvr|100.0000000000|estop|ARMED
|avail|AVAILABLE
2015-04-15T00:02:19.575164|htemp|WARNING|HTEMP|1|HIGH|OilTemperature High!

So, if Adapters are not part of MTConnect Standard, why do we
need Adapters?
• Adapters provide the ability to:

– Connect to Devices using different communication protocols
– Connect to a variety of devices such as CNCs, sensors, etc.
– Use a generic Agent for all devices

• Adapters also provide a clear separation of responsibilities:
– An Adapter is responsible to:

 Collect data from one Device
 Filter out duplicate data
 Write data to the Agent as text

– An Agent is responsible to:
 Collect data from Adapters
 Format the data into an MTConnect Standard XML stream
 Respond to HTTP requests from Applications with the appropriate HTTP response

Skills You Will Need

1. Format Time in Universal Time Coordinates (UTC)
 YYYY-MM-DDTHH:MM:SS.FFFZ (ISO 8601)
 EX. 2015-04-30T18:15:00.000Z

2. Create a TCP Server Socket and Listen for a Client
3. Read and Write to the Socket
4. This assumes that you can get data from a Device

Simpler Yet
• There is no need to master those skills
• There are frameworks in C++, C#, Ruby, and

Python which to handle those items
• This Lab exercise will utilize the C# Framework

How Do Frameworks Help?
• Frameworks provide:

– Communication and protocols
– Data formatting
– Detection of changed Data Items
– Support for MTConnect Data Types

 Events
 Samples
 Conditions
 Message
 Time Series
 Assets

Data Items are covered in Part 2 of the Standard
Assets are covered in Part 4 of the Standard

Programmer’s Responsibilities
• The Programmer is responsible for:

– Determining the controller configuration
– Creating a Data Item for each parameter to monitored
– Gathering data periodically or on an event callback
– Sending only changed values

Adapter Design Approach
• Gather the information for the following components:

– Controller & Paths
– Axes
– Systems
– Cutting Tools

Information From Controller & Paths
• Priorities for a CNC

1. Controller Mode
2. Execution State
3. Alarms → Conditions & Messages
4. Program Name
5. Program Comments
6. Line & Block
7. Overrides – Path Feedrate, Spindle Speed and Rapid
8. Part Count
9. Path Feedrate
10. Path Positions

Information About Axis & Spindles
• Priorities:

1. Position & Angle
2. Spindle Speed
3. Loads
4. Alarms
5. Temperature

Systems
• There are usually a few conditions associated with a few

special alarms
– Coolant
– Hydraulics
– Pneumatics
– Electrical

Getting The Controller Mode
• Let’s use the FANUC FOCAS library as an example since there

is an open source C++ version of the Adapter:
– For the Controller Mode use the FOCAS ODBST status

structure and make a call to the cnc_statinfo function

Mapping The Controller Mode
• The “aut” byte returned as part of the ODBST data structure has

the following definitions:
– status.aut = 5 or 6 indicates the CNC is in MANUAL mode
– status.aut = 0 or 3 indicates the CNC is in MDI or EDIT mode
– Otherwise the CNC is in the AUTOMATIC mode

• This is how some of the basic Controller Modes are mapped for
the FANUC

Community
• Wiki for implementation and behavior

http://mtcup.org/wiki/Main_Page
• Example:

– Current best practice for EDIT mode is MANUAL (EDIT and
BACKGROUND will be implemented in future versions)

– When motion is HOLD or WAIT, then Execution is
INTERRUPTED

– Etc…

http://mtcup.org/wiki/Main_Page

Alarms And Conditions
• Alarms and Conditions require special handling
• Some important facts:

– Multiple conditions can be active for the same type at the
same time

– Conditions are unique by type and native code
 This is an implementation decision

– One or more conditions can be cleared at the same time

Representations
• Conditions are placed on one line

– Similar to messages and time series data
• Conditions have the following fields

– Name
– Level:

 NORMAL
 WARNING
 FAULT
 UNAVAILABLE

– Native Code
– Native Severity
– Qualifier → HIGH or LOW
– Text

How To Handle Alarm Lists??
• Tools implement Mark and Sweep to collect alarms that are

no longer active
• For every alarm in the list, add it to the condition of that type
• If an alarm is not added, it is cleared

– An add marks active alarms, then the sweep finds all
alarms that are not marked and removes them

FOCAS 2 Example
 for (int i = 0; i < 31; i++)
 {
 if (aAlarm & (0x1 << i))
 {
 ODBALMMSG2 alarms[MAX_AXIS];
 short num = MAX_AXIS;

 short ret = cnc_rdalmmsg2(aFlibhndl, i, &num, alarms);
 if (ret != EW_OK)
 continue;

 for (int j = 0; j < num; j++)
 {
 ODBALMMSG2 &alarm = alarms[j];
 char num[16];

 Condition *cond = translateAlarmNo(i, alarm.axis);
 if (cond == NULL)
 continue;

 sprintf(num, "%d", alarm.alm_no);
 cond->add(Condition::eFAULT, alarm.alm_msg, num);
 }
 }
 }

Native Code Message

416 Gen Fault 1

912 Gen Fault 2

649 Gen Fault 3

Delta

• Each time we evaluate which codes are still active, newly active, and no longer active
• In this example, 912 is removed and 214 is added

• …|system|NORMAL|912|||
• …|system|FAULT|214|||Gen Fault 4

Native Code Message

416 Gen Fault 1

649 Gen Fault 3

214 Gen Fault 4

Native Code Message

416 Gen Fault 1

912 Gen Fault 2

649 Gen Fault 3

Delta

• When all the alarms are cleared, a NORMAL is sent to clear all

• …|system|NORMAL||||

Native Code Message

Native Code Message

416 Gen Fault 1

649 Gen Fault 3

214 Gen Fault 4

Simple Conditions
• If the data source sends an event when the alarms starts and

stops you can use a simple condition
• A simple condition requires an explicate clear when the

condition is no longer active

Make the Adapter Dynamic
• To make the Adapter dynamic it has to discover the axes and

paths by interrogating the Controller
• It then uses that information to dynamically configure the

Adapter to get data from these components
• Now we have a dynamic Adapter – match the Agent’s

configuration to what we discover and it works across machine
tool configurations

• The open source FANUC Adapter is an example of self-
configuring multipath and axis

C# Framework MTConnect.dot.net.sdk
 Categories

C# Framework

C# Framework
• Fields contain the objects required to

implement the Adapter
• Some Examples are:

– mActiveClients: keeps a count of clients
– mClients: array that keeps a list of clients that

are connected
– mDataItems: array that keeps a list of the

Machine’s data items

C# Framework
• The Methods are functions provided by

the Adapter class used to:
– Listen for and Connect to new Clients
– Verify that a Client is still connected
– Add DataItems
– Send Data to Clients
– Start and Stop the Adapter

The Machine Tool adapter
uses the Adapter class’s
“AddDataItem” method to
add the data items it
wants to collect from the
CNC control to a list of
data items “mDataItems”

Adapter Lab
1. Availability
2. Emergency Stop event
3. Controller Mode and Execution events
4. Program and Message events
5. Position and Load samples
6. Conditions
Time Permitting
7. Cutting Tool
8. Time Series
9. MTConnect Extensibility

Simple 2 Axis Machine

Step 1
• Create variable mAvail, Event mAvail = new Event(“avail");
• Add mAvail to DataItems, mAdapter.AddDataItem(mAvail);
• Set mAvail to “AVAILABLE”, mAvail.Value = "AVAILABLE";

Step 2
• Create variable mEStop,

– Event mEStop = new Event("estop");

• Add mEStop to DataItems,
– mAdapter.AddDataItem(mEStop);

• Modify gather_Tick method

Step 3
• Create 2 variables,

– Event mMode = new Event("mode");
– Event mExec = new Event("exec");

• Add mMode and mExec to DataItems,
– mAdapter.AddDataItem(mMode);
– mAdapter.AddDataItem(mExec);

• Modify gather_Tick method

Step 4

• Create 3 new data items, mFunctionalMode, mProgram and mMessage
– Event mFunctionalMode = new Event("func");
– Event mProgram = new Event("program");
– Message mMessage = new Message("message");

• Add the data items to the list
– mAdapter.AddDataItem(mFunctionalMode);
– mAdapter.AddDataItem(mProgram);
– mAdapter.AddDataItem(mMessage);

• Modify the add code to gather_Tick method to collect the data

Step 5
• Create 4 samples, x postion, x load, spindle speed and spindle load

– Sample mPosition = new Sample("xPosition");
– Sample mxLoad = new Sample("xLoad");
– Sample mSpeed = new Sample("sSpeed");
– Sample mcLoad = new Sample("sLoad");

• Add the new data items to the list
– mAdapter.AddDataItem(mPosition);
– Etc…

• Add code to gather_Tick to generate data for this data items

Step 6
• Create 5 Conditions, mSystem, mTemp, mOverload, mTravel and mFillLevel

– Condition mSystem = new Condition("system");
– Condition mTemp = new Condition("temp");
– Condition mOverload = new Condition("overload");
– Condition mTravel = new Condition("travel");
– Condition mFillLevel = new Condition("cool_low", true);

• Add the new data items to the list
– mAdapter.AddDataItem(mSystem);
– Etc…

• Add code to generate data for this data items and make the modification to gather_Tick to
collect the dat.

Step 7
• Add Cutting Tool Asset

Step 8
• Create 5 TimeSeries, mAudio

– TimeSeries mAudio = new TimeSeries("audio", 8000);
– WaveIn mWave; (uses the NAudio Library)

• Add the new data items to the list
– mAdapter.AddDataItem(mAudio);

• Add code to generate data for this data items and make the
modification to gather_Tick to collect the dat.

Step 9
• MTConnect Extensibility example.

Questions?
• Contact us:

– wang@techsolve.org
– wickehaus@techsolve.org

mailto:wang@techsolve.org
mailto:wickehaus@techsolve.org

Thanks
• Will Sobel, System Insights

– This presentation and lab are based on Will’s
previous MC2 workshops.

• Hilena Hailu, AMT
– Support in organizing this presentation.

Addendum

Time Series
• Real time data collected at a fixed frequency
• Data is represented as a list of numbers followed by a space
• Also placed on a single line like conditions
• Fields

– Name
– Count
– Rate
– Values ex. 9325..166 54321.13555 23.09123

Time Series Handling

• Timestamp is always set to the time the LAST
sample was taken

• The time of the first sample = Timestamp –
(count / sample rate)

• Rate is given in Hertz (Hz) which is equal to
samples/second

Example

• This is a time series with 5 items at 10 Hz
• The sample was taken at 13:00:12.10, so having 5 samples at 10 Hz then
 Δt = (5 samples)/(10 samples/s) = 0.5s
 ∴ start time = 13:00:12.10 – 0.5s = 13:00:11.60
• The data will be represented like this:

− …T13:00:12.1|ia|5|10|16.0 242.0 12.0 66.0 18.0
• The rate is optional if it is fixed and has been provided in the DataItem defined in

the Devices.XML

time name count rate

T13:00:12.10 ia 5 10 16 24 12 66 18

Relative Time
• New feature to handle sensors without wallclock time
• Instead of giving a timestamp provide a relative clock

tick in milliseconds
• Agent will use it’s own time then compute the offsets

based on the relative time
• Maintains consistent spacing between samples and

allows for data analysis

Relative Time Example

• 1456|m|5||1 2 2 4 5
• 1556|m|5||4 1 4 2 3
• 1656|m|5||2 2 1 5 4

• Each sample is 100ms apart, the Agent will create

timestamps with an exact 100ms spacing

Assets
• Cutting Tool is currently the only asset we

support, but others can be handled by the Agent
as well

• The Agent now supports a multi-line document
for assets

• It sends an XML document with an asset as the
content (can be multiline)

Asset Representation

• Use the special name @ASSET@ to signify an
asset is to follow

• Next the Asset ID
– All assets have a unique id

• Specify the type: “CuttingTool”
• And the data …..

Multiline
• Asset example:

…|@ASSET|AAA123|CuttingTool|--multiline—ABCD
<CuttingTool serialNumber=“1” toolId=“KSSP300R4SD43L240” timestamp=“2011-05-11T13:55:22”
assetId =“KSSP300R4SD43L240.1” manufacturers=“KMT,Parlec”>
<CuttingToolLifeCycle>
 <CutterStatus><Status>NEW</Status></CutterStatus>
 <Measurements>
 <BodyDiameterMax code=“BDX”>73.25</BodyDiameterMax>
 <OverallToolLength nominal=“323.85” minimum=“323.596”
maximum=“324.104” code=“OAL”>323.85</OverallToolLength>
 </Measurements>
</CuttingToolLifeCycle>
</CuttingTool>
--multiline--ABCD

Alternative

• All data can be written to one line
• Example

…|@ASSET@|AAA123|<CuttingTool serialNumber=“1”
toolId=“KSSP300R4SD43L240” timestamp=“2011-05-11T13:55:22”
assetId =“KSSP300R4SD43L240.1” manufacturers=“KMT,Parlec”>…

• This format is used for both adding and updating
assets

Adding Other Assets

• Specify another asset type and provide full asset
document

• Read Part 4 of the MTConnect Standard for full
details on XML formats

• Cutting Tool is parsed and reformatted by the
Agent to ensure proper representation

	Data Acquisition: Building an MTConnect Adapter
	Slide Number 2
	Agenda
	MTConnect® Overview
	What is an Adapter?
	Slide Number 6
	Slide Number 7
	Device - Adapter Communication
	Device - Adapter Communication
	Adapter - Agent Communication
	Agent Adapter Protocol
	Data For The Open Source Agent
	Slide Number 13
	Skills You Will Need
	Simpler Yet
	How Do Frameworks Help?
	Programmer’s Responsibilities
	Adapter Design Approach
	Information From Controller & Paths
	Information About Axis & Spindles
	Systems
	Getting The Controller Mode
	Mapping The Controller Mode
	Community
	Alarms And Conditions
	Representations
	How To Handle Alarm Lists??
	FOCAS 2 Example
	Delta
	Delta
	Simple Conditions
	Make the Adapter Dynamic
	C# Framework MTConnect.dot.net.sdk
	C# Framework
	C# Framework
	C# Framework
	Slide Number 37
	Adapter Lab
	Simple 2 Axis Machine
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Questions?
	Thanks
	Addendum
	Time Series
	Time Series Handling
	Example
	Relative Time
	Relative Time Example
	Assets
	Asset Representation
	Multiline
	Alternative
	Adding Other Assets

