

F O U N D A T I O N

®

MTConnect-OPC UA Companion

Specification

FINAL

Version 1.0

November 8, 2012

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 2

CONTENTS

1 Introduction .. 5

1.1 Background ... 5

1.2 MTConnect-OPC UA Goals .. 5

1.3 Who Will Find Benefit from this Specification? .. 6

1.4 References .. 6

2 Use Cases .. 8

2.1 Overview ... 8

2.2 Device Maker .. 8

2.3 Independent Software Vendor ... 9

2.4 End-User Engineer .. 10

3 MTConnect .. 11

3.1 What is MTConnect? ... 11

3.2 Basics of MTConnect ... 11

4 OPC UA .. 13

4.1 What is OPC UA? ... 13

4.2 Basics of OPC UA ... 14

4.3 Information Modeling in OPC UA ... 14

4.3.1 Concepts………14

4.3.2 Namespaces……..17

4.3.3 Companion Specifications………………………………………………………………………………………18

4.3.4 OPC UA for Devices (DI) …………………………………………………………………………………………19

5 MTConnect in OPC UA .. 20

5.1 Devices .. 20

5.2 Component ... 20

5.3 Device .. 22

5.4 DataItems .. 23

5.4.1 General………..23

5.4.2 Sample DataItems…………………………………………………………………………………………………..24

5.4.3 Event DataItems……………………………………………………………………………………………………..25

5.4.4 Conditions……25

5.5 Streams ... 27

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 3

Figure 1 – The Device Maker Use Case.. 9

Figure 2 – The Independent Software Vendor (ISV) Use Case .. 10

Figure 3 – The End User Engineer Use Case ... 11

Figure 4 – MTConnect Overview ... 12

Figure 5 – The Scope of OPC UA within an Enterprise ... 14

Figure 6 – A Basic Object in an OPC UA Address Space .. 15

Figure 7 – The Relationship between Type Definitions and Instances 16

Figure 8 – Examples of References between Objects ... 16

Figure 9 – The OPC UA Information Model Notation ... 17

Figure 10 – A Visual Representation of the Sample ObjectType ... 19

Figure 11 – The OPC UA for Devices (DI) Model .. 19

Figure 12 – MTConnect Devices in a UA Address Space .. 20

Figure 13 – MTConnect DataItems in the UA Address Space.. 24

Figure 14 – MTConnect Conditions in the UA Address Space ... 27

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 4

Table 1 – Example ObjectType Definition ... 18

Table 2 – MTComponentType Definition ... 21

Table 3 – MTDeviceType Definition .. 22

Table 4 – MTDataItemType Definition ... 23

Table 6 – MTEventDataItemType Definition .. 25

Table 7 – MTConditionType Definition .. 26

Table 8 – MTConditionClassType Definition ... 27

Table 9 – An Example Condition Event ... 29

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 5

1 Introduction

1.1 Background

In September 2010, the OPC Foundation and the MTConnect Institute signed a memorandum

of understanding to provide a mechanism for OPC and MTConnect to collaborate to extend the

reach of the existing manufacturing data exchange standards and implementation technologies

in order to:

 Evolve the existing standards for each organization to provide complete manufacturing

technology interoperability.

 Provide the mechanism for continuous improvement of standards and specifications

overseen by each body.

 Work directly with the end users and suppliers of technology and manufacturing.

 Provide a coordinating function to exchange insights, identify overlaps, and harmonize

work where appropriate.

 Facilitate clear communication and education for users and others concerning possible

overlaps and the ways the standards and specifications can be used.

Provide a solid foundation to develop and deliver specifications, technology and processes to

facilitate adoption of the technology into real products.

The outcome of that agreement is this companion specification called MTConnect-OPC UA.

MTConnect-OPC UA is a set of companion specifications to ensure interoperability and

consistency between MTConnect specifications and the OPC Unified Architecture (UA)

specifications, as well as the manufacturing technology equipment, devices, software or other

products that implement those standards.

1.2 MTConnect-OPC UA Goals

MTConnect-OPC UA is designed with all of the following first-class goals in mind, in the interest

of wide and rapid adoption by vendors of equipment and software:

• Incremental adoption—the technical barrier to MTConnect-OPC UA enablement will be

greatly reduced with this companion specification and the source code and binaries

available in the MTConnect-OPC UA reference port

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 6

• Evolution—MTConnect-OPC UA can incrementally evolve without jeopardizing

backwards compatibility of previous MTConnect-OPC UA versions.

• Customizability—MTConnect-OPC UA’s extensibility makes it easy to create value-added

software and tools that are machine-specific or installation-specific, without

jeopardizing compatibility with other equipment or software.

• Non-proprietary—built on open standards, backed by both the OPC Foundation and the

MTConnect Institute which represents hundreds of companies, individuals, government

organizations and non-profits all working toward the goal of increased productivity in

the manufacturing arena.

1.3 Who Will Find Benefit from this Specification?

To adopt the MTConnect-OPC UA one will need to have a clear understanding of both

MTConnect and OPC. From the technical side, we will discuss MTConnect-OPC UA from:

 The backend or OPC UA Server and MTConnect agent/adapter architecture.

 The client or software application side, we will discuss how one develops an application

that is MTConnect-OPC UA enabled.

From the business side, we will reference a companion business MTConnect-OPC UA white

paper that addresses the concerns from the owners and top management of the business as

well as the operations and engineering management. It is the objective of this white paper to

provide information primarily to those MTConnect and OPC UA software developers. We do

not make assumptions about the level of programming expertise beyond what would be

considered to be “reasonable” level of expertise. It is for this reason that we include enough

details about both MTConnect and OPC UA to provide the ability to implement this companion

specification without having references back to other documents. However, the OPC and

MTConnect standards are critical and become much more meaningful with the appropriate

overview from this document.

1.4 References

1.4.1 OPC Foundation

The following specifications from the OPC foundation are referenced by this specification. The

OPC Foundation also provides addition specification for other related topics such as historical

data. For these additional specifications see http://www.opcfounadtion.org .

[UA Part 1] OPC UA Specification: Part 1 – Concepts

http://www.opcfoundation.org/UA/Part1/

http://www.opcfounadtion.org/
http://www.opcfoundation.org/UA/Part1/

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 7

[UA Part 2] OPC UA Specification: Part 2 – Security Model

http://www.opcfoundation.org/UA/Part2/

[UA Part 3] OPC UA Specification: Part 3 – Address Space Model

http://www.opcfoundation.org/UA/Part3/

[UA Part 4] OPC UA Specification: Part 4 – Services

http://www.opcfoundation.org/UA/Part4/

[UA Part 5] OPC UA Specification: Part 5 – Information Model

http://www.opcfoundation.org/UA/Part5/

[UA Part 6] OPC UA Specification: Part 6 – Mappings

http://www.opcfoundation.org/UA/Part6/

[UA Part 7] OPC UA Specification: Part 7 – Profiles

http://www.opcfoundation.org/UA/Part7/

[UA Part 8] OPC UA Specification: Part 8 – Data Access

http://www.opcfoundation.org/UA/Part8/

[UA Part 9] OPC UA Specification: Part 9 – Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

[UA DI] OPC UA: Devices (DI) Companion Specification.

http://www.opcfoundation.org/UA/DI/

1.4.2 MTConnect Institute

[MT Part 1] MTConnect® Standard: Part 1 – Overview, Version 1.1

http://mtconnect.org/media/7571/mtc_part_1_overview_1.1.0.pdf

[MT Part 2] MTConnect® Standard: Part 2 – Components and DataItems, Version 1.1

http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part9
http://www.opcfoundation.org/UA/DI/
http://mtconnect.org/media/7571/mtc_part_1_overview_1.1.0.pdf

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 8

http://mtconnect.org/media/7574/mtc_part_2_components_1.1.0.pdf

[MT Part 3] MTConnect® Standard: Part 3 – Streams, Version 1.1

http://mtconnect.org/media/7577/mtc_part_3_streams_1.1.0.pdf

1.5 Abreviations

The following abbreviation are used in this document

 ERP – Enterprise Resource Planning

 HMI – Human Machine Interface

 Http – Hyper Text Transport Protocol

 MES – Management Execution Systems

 PLC – Programmable Logic Controller

 PMS - Production Management Systems

 SCADA -

 TCP/IP -

 XML - eXtensible Mark-up Language

2 Use Cases

2.1 Overview

Before delving into the details of the specification it is useful to identify some of the key use

cases for the technology. The use cases defined here are not an exhaustive list; however, they

should help demonstrate how this specification is expected to be used.

2.2 Device Maker

The use case shown in Figure 1 centers on the maker of a piece of equipment or device that

needs to provide connectivity to other systems. In some cases, the device maker will be

targeting markets other than equipment (Machine Tool) and would benefit from a more generic

specification like OPC UA. On the other hand, the standardized semantics of MTConnect are

extremely important to interoperability within the Machine Tools space. The MTConnect-OPC

UA specification allows the device makers to standardize on OPC UA as the network interface

while making their information accessible to MTConnect aware applications. Figure 1 shows

several clients developed for different purposes that can access information produced by the

device via OPC UA.

http://mtconnect.org/media/7574/mtc_part_2_components_1.1.0.pdf
http://mtconnect.org/media/7577/mtc_part_3_streams_1.1.0.pdf

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 9

OPC UA

Server

Device

Hardware

MTConnect

OPC-UA

Client

PLCOpen

OPC-UA

Client

Generic

OPC-UA

Client

MTConnect

Application

OPC UA to

MTConnect

Gateway

Internal

Device

APIs

Controller,

PLC or other

dedicated system

Figure 1 – The Device Maker Use Case

2.3 Independent Software Vendor

The use case shown in Figure 2 centers on an Independent Software Vendor (ISV) that wishes to

sell products to users of equipment such as Machine Tools. An ISV will typically want to provide

gateways that convert information between MTConnect and OPC UA as well as adding

numerous features that add value to the semantics defined in the MTConnect standards. The

MTConnect-OPC UA specification allows the ISV to extend the MTConnect-OPC UA information

model with application specific constructs which can be easily accessed via any standard OPC

UA client product. These added features will exist in parallel to the standard MTConnect

interfaces. Figure 2 shows an ISV product that consumes data from MTConnect and OPC UA

enabled devices and then makes it available via MTConnect and OPC UA.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 10

`

OPC UA

Server

MTConnect

OPC UA

Client

OPC UA

Alarms

Client

OPC UA

Historian

MTConnect

Application Value added

Analysis

Engine

MTConnect

Agent

OPC UA

Client

MTConnect

Agent

Device

Device

Device

Device

Figure 2 – The Independent Software Vendor (ISV) Use Case

2.4 End-User Engineer

This use case shown in Figure 3 centers on an Engineer or Systems Integrator responsible for

setting up and configuring an MTConnect enabled system for a user of Machine Tools. The

Engineer is typically familiar with the MTConnect specification but wishes to configure generic

OPC UA client applications. The MTConnect-OPC UA specification allows the Engineer to

understand how MTConnect concepts are represented in OPC UA and determine what they

need to do to configure their OPC UA Applications. Without this specification, an Engineer

interested in OPC based data would have had to rely on vendor documentation and a laborious

process of manually mapping tags to MTConnect concepts. This specification eliminates the

need for that by providing a standard mapping. Figure 3 shows how the common Information

Model defined by this specification gives the End User Engineer choices when it comes to

accessing device data.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 11

OPC UA

Server 1

MTConnect

Agent

OPC UA

Server 2

End User

Engineer
Device

Same DeviceDifferent

Vendors

Same Structure

and

Semantics

Reduced

Costs

Figure 3 – The End User Engineer Use Case

3 MTConnect

3.1 What is MTConnect?

MTConnect is an open and royalty-free set of standards designed as a universal factory floor

communications protocol.

MTConnect is intended specifically for the shop floor environment. While there are numerous

communication solutions available, MTConnect defines a “dictionary” for manufacturing data.

This means that all data is provided with full context – name, definition, scaling, etc.

With most communication networks, all data is defined at the point of use – the application.

With MTConnect, the data is defined at the source – the device or Machine Tool.

MTConnect devices process information locally and then provide that data in a consistent

format to any client application requesting data - ERP, MES, Production Management Systems,

Maintenance Systems or a standard Browser, for examples.

3.2 Basics of MTConnect

MTConnect is based on standard Internet technologies – HTTP, Ethernet, and XML (Extensible
Mark-Up Language – the underlying language of most web sites).

As an Extensible Standard, MTConnect cannot address every conceivable data need on the shop
floor. MTConnect provides a clearly defined method for adding additional data types which

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 12

can be exchanged between equipment, devices, controllers and applications; providing the
flexibility to meet the demands of varying environments.

MTConnect is made up of five fundamental components (see Figure 4 below):

Device – A type of equipment (Machine Tool) or data source.

Adapter – An optional piece of software (and sometimes hardware) that provides a link or
conversion from the data source and data definition in the device to the MTConnect Data
definition. This can be thought of as a translator. The Adapter is not needed for devices that
use MTConnect as their native language.

Agent – A piece of software that collects, arranges, and stores data from the device. It receives
requests for data from applications, processes those requests, and then transmits the required
data.

Network - The physical connection between a data source (device) and the data consumer
(application). Normally, this is an Ethernet network. The communication on the network
normally uses standard internet communications methods – http:// protocol. It should be
noted that the MTConnect Structure is adaptable and can be implemented in conjunction with
other networking solutions other than Ethernet and Internet protocols.

Client – A Client initiates all requests for MTConnect data. A Client resides in an application or

device. The Client is a software function in the application or device that actually requests data

from the Agent.

Figure 4 – MTConnect Overview

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 13

The MTConnect Standard does not restrict the physical implementation of how the MTConnect

system is designed.

- The Network may be a physical implementation, like an Ethernet network. It can also

be implemented using wireless or other technologies.

- The Internet Protocol (http) does not mean that your machine is automatically

connected outside your plant to the Internet. This is a communications method only.

Protection of your data is controlled by your networking standards.

- There is no specific requirement for where the Adaptor and Agent function is located.

These typically are located at the device. However, they can be placed anywhere in the

networking architecture. Also, they do not need to be located together. It is totally

MTConnect compliant to have the Adapter installed at the device and the Agent

installed along with the Client. The location of these functions should be considered

when implementing MTConnect since they will impact the level of data flow on

different segments of your network.

4 OPC UA

4.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal factory floor

communications protocol.

OPC UA is designed specifically for the factory environment. While there are numerous

communication solutions available, OPC UA combines a state of art security model (see

[UA Part 2]), a fault tolerant communication protocol and an information modeling framework

that allows application developers to represent their data the in a way that makes sense to

them.

OPC UA has a broad scope which delivers for economies of scale for application developers.

This means that a larger number of high quality applications at a reasonable cost are available

to factory owners. When combined with powerful semantic models such as MTConnect, OPC

UA makes it easier for factory owners to access data via generic commercial application.

The OPC UA model is scalable from small devices to ERP systems. OPC UA devices process

information locally and then provide that data in a consistent format to any application

requesting data - ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard

Browser, for examples. For a more complete overview see [UA Part 1].

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 14

4.2 Basics of OPC UA

As an Open Standard, OPC UA is based on standard Internet technologies – TCP/IP, HTTP,
Ethernet, and XML.

As an Extensible Standard, OPC UA provides a set of services (see [UA Part 4]) and a basic
information model framework. This framework provides an easy manner for creating and
exposing vendor defined information in a standard way. More importantly all OPC UA Clients
are expected to be able to discover and use vendor defined information. This means OPC UA
users can benefit from the economies of scale that come with generic visualization and
historian applications. This specification is an example of an OPC UA Information Model
designed to meet the needs of Machine Tool developers and users.

OPC UA Clients can be any consumer of factory data from another device on the network to
browser base thin clients and ERP systems. The full scope of OPC UA applications are shown in
Figure 5.

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Historian

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to Device

Control to Device

Network

Integration

Integration

with

ERP and MES

Figure 5 – The Scope of OPC UA within an Enterprise

4.3 Information Modeling in OPC UA

4.3.1 Concepts

OPC UA provides a framework that can be used to represent complex information as Objects in

an address space which can be accessed with standard web services. These Objects consist of

Nodes connected by References. Different classes of Nodes convey different semantics. For

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 15

example a Variable Node represents a value that can be read or written. The Variable Node has

an associated DataType that can define the actual value, such as a string, float, structure etc. It

can also describe the variable value as a variant. A Method Node represents a function that can

be called. Every Node has a number of Attributes including a unique identifier called a NodeId

and non-localized name called as BrowseName. An Object representing a ‘Reservation’ is

shown in Figure 6.

Reservation

Who When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure
Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 6 – A Basic Object in an OPC UA Address Space

Object and Variable Nodes are called Instance Nodes always reference a Type Definition

(ObjectType or VariableType) Node which describes their semantics and structure. Figure 7

illustrates the relationship between an Instance and its Type Definition.

The Type Nodes are templates that define all of the children that can be present in an Instance

of the Type. In the example in Figure 7 the PersonType ObjectType defines two children: First

Name and Last Name. All instances of PersonType are expected to have the same children with

the same BrowseNames. Within a Type the BrowseNames uniquely identify the child. This

means Client applications can be designed to search for children based on the BrowseNames

from the Type instead of NodeIds. This eliminates the need for manual reconfiguration of

systems if a Client uses Types that multiple devices implement.

OPC UA also supports the concept of sub typing. This allows a modeler to take an existing type

and extend it. There are rule regarding sub typing defined in [UA Part 3], but in general they

allow the extension of a given type or the restriction of a DataType. For example the modeler

may decide that the existing ObjectType in some cases needs an additional variable. The

modeler can create a subtype the object and add the variable. A client that is expecting the

parent type can treat the new type as if it was of the parent type. With regard to DataTypes, if

a variable is defined to have a numeric value, a sub type could restrict the Value to a float.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 16

Who

First Name
“John”

Last Name
“Smith”

BaseObjectType

PersonType

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

Figure 7 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected together in ways that describe their relationships. All

References have a ReferenceType that specifies the semantics of the relationship. References

can be hierarchical or non-hierarchical. Hierarchical references are used to create the structure

of Objects. Non-hierarchical are used to create arbitrary associations. Applications can define

their own ReferenceTypes by creating subtypes of the existing ReferenceType. Subtypes inherit

the semantics of the parent but may add additional restrictions. Figure 8 depicts several

references connecting different Objects.

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Figure 8 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation

is summarized in Figure 9. UML representations can also be used; however, the OPC UA

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 17

notation is less ambiguous because there is a direct mapping from the elements in the figures

to Nodes in the address space of an OPC UA server.

Object Variable Method View

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

Has
EventSource

Has
Component

Has
TypeDefinition

Has
Subtype

Has
Property

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Figure 9 – The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in

[UA Part 3] and the base OPC UA Address space is described in [UA Part 5]..

OPC UA specification defines a very wide range of functionality in its basic information model. It
is not expect that all clients or servers support all functionality in the OPC UA specifications.
OPC UA includes the concept of profiles, which segment the functionality into testable
certifiable units. This allows the development of companion specification (such as MTConnet-
OPC UA) that can describe the subset of functionality that is expected to be implemented. The
profiles do not restrict functionality, but generate requirements for a minimum set of
functionality (see [UA Part 7])

4.3.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent

address space. Namespaces are used to make this possible by eliminating naming and id

conflicts between information from different sources. Namespaces in OPC UA have a globally

unique string called a NamespaceURI and a locally unique integer called a NamespaceIndex.

The NamespaceIndex is only unique within the context of a Session between an OPC UA Client

and an OPC UA Server. All of the web services defined for OPC UA use the NamespaceIndex to

specify the Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and

QualifiedNames. NodeIds are globally unique identifiers for Nodes. This means the same Node

with the same NodeId can appear in many Servers. This, in turn, means Clients can have built in

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 18

knowledge of some Nodes. OPC UA Information Models generally define globally unique

NodeIds for the TypeDefinitions defined by the Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the

BrowseNames of Nodes and allow the same Names to be used by different information models

without conflict. The BrowseName is used to identify the children within a TypeDefinitions.

Instances of a TypeDefinition are expected to have children with the same BrowseNames.

TypeDefinitions are not allowed to have children with duplicate BrowseNames; however,

Instances do not have that restriction.

All TypeDefinitions and BrowseNames defined by this specification are qualified by the

MTConnect Namespace (“urn:mtconnect.com:MTConnectDevices:1.1”) unless stated

otherwise.

4.3.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an

information model by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that

represent the concepts used in the vertical market. Table 1 contains an example of an

ObjectType definition.

Table 1 – Example ObjectType Definition

Attribute Value

BrowseName WidgetType

IsAbstract True

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the Properties of the TopologyElementType from [UA DI].

HasProperty Variable Color String PropertyType Mandatory

HasProperty Variable Flavor LocalizedText PropertyType Mandatory

HasProperty Variable Rank Int32 PropertyType Mandatory

The BrowseName is a non-localized name for an ObjectType.

IsAbstract is a flag indicating whether instances of the ObjectType can be created.

The bottom of the table lists the child nodes for the type. The Reference is the type of

reference between the Object instance and the child Node. The NodeClass is the class of Node.

The BrowseName is the non-localized name for the child. The DataType is the structure of the

Value accessible via the Node (only used for Variable NodeClass Nodes) and the TypeDefinition

is the ObjectType or VariableType for the child.

The ModellingRule indicates whether a child is Mandatory or Optional. It can also indicate

cardinality. Note that the BrowseName is not defined if the cardinality is greater than 1:1.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 19

Figure 10 visually depicts the ObjectType defined in Table 1 along with an instance of the

ObjectType.

WidgetTypeWidget #1

Color
“Red”

Flavour
“Lemon”

Rank
“2”

Color
[String]

Flavor
[LocalizedText]

Rank
[Int32]

Figure 10 – A Visual Representation of the Sample ObjectType

4.3.4 OPC UA for Devices (DI)

OPC UA for Devices (DI) (see [UA DI]) is an information model for a generic device containing

multiple components called ‘Functional Groups’. Figure 11 illustrates the structure of a

TopologyElementType which is the base type used to construct devices and their groups. An

MTConnect Device is a subtype of the DI DeviceType.

FolderType

FunctionalGroup
Type

TopologyElement
Type

BaseObjectType

FunctionalGroupType:

<GroupIdentifier>

BaseDataVariableType:

<ParameterIdentifier>

<MethodIdentifier>

Organizes

0..n

DeviceType

Figure 11 – The OPC UA for Devices (DI) Model

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 20

5 MTConnect in OPC UA

5.1 Devices

The top level container for an MTConnect Agent is the Devices element. This is mapped to the

DI DeviceSet object which appears at the root of the Objects folder.

An OPC DI DeviceSet can contain devices that conform to other OPC UA Device Profiles such as

PLCOpen. The structure of an MTConnect Device is described below. Generic OPC UA Clients

should be able to treat all devices in the same way. MTConnect aware clients may ignore

devices that do not comply with the MTConnect OPC UA profile. Figure 12 illustrates the top of

the address space for an MTConnect enabled OPC UA Server.

Objects

DeviceSet

HMC_3Axis

HyperQuadrex

???

MTDeviceType

Server

Figure 12 – MTConnect Devices in a UA Address Space

Figure 12 depicts two separate hierarchies. The Organizes hierarchy from Objects Node is used

to discover the structure of the devices. The HasNotifier hierarchy from the Server Node is used

when subscribing to events (see discussion later in document).

5.2 Component

An MTConnect Component element is the container for Machine Tool information that can be

accessed via MTConnect. Each Component is mapped to an instance of an Object Node with a

TypeDefinition that is MTComponentType or one of its subtypes.

The MTComponentType ObjectType is defined in Table 2.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 21

Table 2 – MTComponentType Definition

Attribute Value

BrowseName MTComponentType

IsAbstract False

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the children of the TopologyElementType which is defined in [UA DI] .

HasProperty Variable Uuid String PropertyType Mandatory

HasProperty Variable NativeName String PropertyType Optional

HasProperty Variable Station String PropertyType Optional

HasComponent Object DataItems FunctionalGroupType Mandatory

HasComponent Object Conditions FunctionalGroupType Optional

HasComponent

HasNotifier

Object <server defined> MTComponentType Optional (0..N)

The Uuid, NativeName and Station properties correspond to their definitions in [MT Part 2].

The BrowseName of an MTComponentType instance is always the value of the ‘name’ attribute.

The DataItems Object is a container for the MTConnect Sample and Event DataItems supported

by the Component.

The Conditions Object is a container for the MTConnect Condition DataItems supported by the

Component.

The MTConnect specification defines many standard Components. A complete set of

TypeDefinitions for the standard components is not provided in this specification in order to

avoid transcription errors. Instead the following design rules should be followed when creating

an Object Node from an MTConnect Component element:

1) The BrowseName is the ‘name’ attribute;

2) The Description is the CDATA from the ‘Description’ element;

3) The TypeDefinitionId is the NodeId of the MTComponentType identified by the QName;

4) Any DataItems are added as children of the DataItems or Conditions folders;

5) Any sub-Components are added as targets of HasComponent and HasNotifier

references;

The QName of a Component element identifies the subtype of MTComponentType. If this

QName is not already recognized by the UA Server it can create a new ObjectType Node by

following these design rules:

1) The BrowseName is the QName with ‘ComponentType’ appended;

2) Add a HasSubtype reference from MTComponentType;

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 22

The NodeId of the dynamically created ObjectType is server dependent. This specification will

define NodeIds for the Component types known at the time this document was written.

5.3 Device

An MTConnect Device is the container for all of the components for a piece of equipment. Each

Device is mapped to an instance of an Object Node with a TypeDefinition that is MTDeviceType

or one of its subtypes. The MTDeviceType ObjectType is defined in Table 3.

Table 3 – MTDeviceType Definition

Attribute Value

BrowseName MTDeviceType

IsAbstract False

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the Properties of the DeviceType which is defined in [UA DI]

HasProperty Variable Uuid String PropertyType Mandatory

HasProperty Variable NativeName String PropertyType Optional

HasProperty Variable Station String PropertyType Optional

HasComponent Object DataItems FunctionalGroupType Mandatory

HasComponent Object Conditions FunctionalGroupType Optional

HasComponent Variable Availability String AvailabilityItemType Mandatory

HasComponent

HasNotifier

Object <server defined> MTComponentType Optional (0..N)

The Uuid, NativeName and Station properties correspond to their definitions in [MT Part 2].

The DataItems Functional Group is a container for the MTConnect Sample and Event DataItems

supported by the Device.

The Conditions Functional Group is a container for the MTConnect Condition DataItems

supported by the Device.

The Availability Node is the target of a HasComponent reference from the Device and the

DataItems folder. This allows clients to treat it as any other DataItem.

The DI DeviceType defines several properties for device metadata. The Description element

may contain attributes which can be used to set these properties. Specifically:

1) The value of the Manufacturer property is the ‘manufacturer’ attribute;

2) The value of the SerialNumber property is the ‘serialNumber’ attribute;

Any Components of the Device are added as targets of HasComponent and HasNotifier

references.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 23

5.4 DataItems

5.4.1 General

An MTConnect DataItem describes a piece of information that can be collected from a

component. Each DataItem is mapped to an instance of a Variable Node with a TypeDefinition

that is a subtype of MTDataItemType. The MTDataItemType VariableType is defined in

Table 4.

Table 4 – MTDataItemType Definition

Attribute Value

BrowseName MTDataItemType

IsAbstract True

DataType BaseDataType

ValueRank Scalar

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the Properties of the DataItemType which is defined in [UA Part 8].

HasProperty Variable CoordinateSystem String PropertyType Optional

HasProperty Variable Source String PropertyType Optional

The CoordinateSystem property corresponds to the attribute defined in [MT Part 2].

The Source property is the contents of the Source element.

Each MTConnect DataItem defines a category, type and subtype attributes. These three values

uniquely identify a subtype of MTDataItemType. The mappings for SAMPLE and EVENT

categories are:

 SAMPLE: MTSampleDataItemType

 EVENT: MTEventDataItemType

The mappings for CONDITION category is discussed in the section on Conditions below.

The type is mapped to a subtype of the category. The following design rules are followed when

creating the VariableType Node from type attribute:

1) The BrowseName is camel case form of type with ‘ItemType’ appended;

2) Add a HasSubtype reference from VariableType for the category;

‘Camel Case’ refers to the convention where multiple words are combined to make a symbol by

removing spaces and capitalizing the first letter of each word (e.g. ‘PathFeedrate’).

The subtype is mapped to a subtype of the VariableType for the type. The following design rules

are followed when creating the VariableType Node from subtype attribute:

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 24

1) The BrowseName is camel case form of subtype with the BrowseName of the parent

type appended (e.g. ActualRotaryVelocityType);

2) Add a HasSubtype reference from VariableType for the type;

The NodeId of the dynamically created VariableType are server dependent. This specification

will define NodeIds for the DataItem types known at the time this document was written.

Figure 13 depicts an MTConnect device with some Components, DataItems and their

TypeDefinitions.

ActualPosition
ItemType

Linear
ComponentType

Position
ItemType

Load
ItemType

base

X

Xact

DataItems

Xload

Axes
ComponentType

HyperQuadrex MTDeviceType

A

Sspeed

DataItems

Cload

Rotary
ComponentType

ActualRotary
Velocity

ItemType

MTSample
DataItemType

Figure 13 – MTConnect DataItems in the UA Address Space

5.4.2 Sample DataItems

The MTSampleDataItemType VariableType is defined in Table 5.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 25

Table 5 – MTSampleDataItemType Definition

Attribute Value

BrowseName MTSampleDataItemType

IsAbstract False

DataType Number

ValueRank Scalar

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the Properties of the MTDataItemType which is defined in Table 4.

HasProperty Variable NativeUnits String PropertyType Optional

HasProperty Variable NativeScale Float PropertyType Optional

HasProperty Variable EURange Range PropertyType Optional

HasProperty Variable EngineeringUnits EUInformation PropertyType Optional

HasProperty Variable ValuePrecision Double PropertyType Optional

The Units, NativeUnits, NativeScale and CoordinateSystem properties correspond to the attribute

definitions in [MT Part 2].

The elements of the EnumStrings array are the contents of the Constraints/Value element.

The EURange property comes from the Constraints/Minimum and Constraints/Maximum

elements.

The EngineeringUnits property is the same as the Units property except it qualifies the unit

names with the MTConnect NamespaceURI.

The ValuePrecision comes from the significantDigits attribute.

5.4.3 Event DataItems

The MTEventDataItemType VariableType is defined in Table 6.

Table 6 – MTEventDataItemType Definition

Attribute Value

BrowseName MTEventDataItemType

IsAbstract False

DataType String

ValueRank Scalar

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the Properties of the MTDataItemType which is defined in Table 4.

HasProperty Variable EnumStrings LocalizedText[] PropertyType Optional

The elements of the EnumStrings array are the contents of the Constraints/Value element.

An example the mapping from MTConnect DataItems to OPC UA Nodes is shown in Figure 13.

5.4.4 Conditions

MTConnect Conditions are DataItems which report the state of health or functionality for a

component. Semantically they are equivalent to Conditions in OPC UA which are Object Nodes

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 26

that produce Events. OPC UA Conditions also appear in the address space and can be accessed

like any other Variable.

Each MTConnect Condition is represented by an Object Node with a TypeDefinition

MTConditionType. The MTConditionType ObjectType is defined in Table 7.

Table 7 – MTConditionType Definition

Attribute Value

BrowseName MTConditionType

IsAbstract False

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the children of the ConditionType which is defined in [UA Part 9].

HasComponent Variable CurrentState String BaseDataVariableType Mandatory

HasComponent Variable ActiveState LocalizedText TwoStateVariableType Mandatory

HasComponent Object LimitState ExclusiveLimit

StateMachineType

Optional

HasProperty Variable NativeCode String PropertyType Optional

HasProperty Variable NativeSeverity String PropertyType Optional

The NativeSeverity and NativeCode properties correspond to the attribute definitions in [MT Part

3].

The CurrentState is the MTConnect Condition state: Unavailable, Normal, Warning or Fault. The

Severity property (inherited from ConditionType) should set based on the value of this Variable

according to these rules:

 Unavailable: 1

 Normal: <= 100

 Warning: > 100 && <=500

 Fault: > 500

The ActiveState Variable indicates whether the condition is in a state that requires attention.

This Variable is ‘Active’ if the MTConnect Condition state is Warning or Fault. If the MTConnect

Condition state is Normal or Unavailable this Variable is ‘Inactive’.

The LimitState is used to specify the MTConnect Condition qualifier attribute. If the qualifier is

‘HIGH’ the LimitState/CurrentState Variable is ‘High’. If the qualifier is ‘LOW’ then the

LimitState/CurrentState Variable is ‘Low’.

The Message property (inherited from BaseEventType) contains contents of the MTConnect

Condition element. If no contents were provided the Server shall choose a suitable default

message.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 27

The BrowseName of the Condition is value of the name attribute for the DataItem. If the name

attribute is missing the camel case version of the type attribute is used instead.

Many MTConnect Conditions may be related to an instance of MTSampleDataItemType which

provides access to the value that can trigger the Condition. If these relationships are known the

Server should provide a HasCondition reference from the Variable for the DataItem to the

corresponding Condition Objects. Figure 14 depicts an example of a component with a Position

DataItem with an associated Condition.

X

Conditions DataItems

Position XactHasCondition

ActiveState

CurrentState

LimitState
ActualPosition

ItemType

MTConditionType

Linear
ComponentType

Figure 14 – MTConnect Conditions in the UA Address Space

The ConditionClassId property (inherited from ConditionType) is used to represent the type

attribute from the DataItem. Each possible type is used to create a subtype of

MTConditionClassType with the BrowseName equal to camel case form of the type. Table 8

defines the MTConditionClassType ObjectType.

Table 8 – MTConditionClassType Definition

Attribute Value

BrowseName MTConditionClassType

IsAbstract True

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherit the children of the BaseConditionClassType which is defined in [UA Part 9].

5.5 Streams

MTConnect streams are the mechanism used to receive updates to DataItems. In OPC UA

Subscriptions are designed to provide the same functionality.

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 28

There are two types of subscriptions in OPC UA: DataChange and Event.

A DataChange Subscription can be created with the following steps:

 Browse the Address Space and read the NodeIds for the DataItems of interest;

 Create a Subscription;

 Create a MonitoredItem for each DataItem of interest;

 Tell the Server to send Notifications when one or more of the DataItems change;

Each Notification has the current value for a DataItem, the Timestamp and StatusCode.

The MonitoredItem allows the Client to specify a different SamplingInterval and QueueSize for

each DataItem. The MinimumSamplingInterval attribute for each DataItem specifies the fastest

supported SamplingInterval. If a UA Server is a front end for a MT Agent the

MinimumSamplingInterval is the value of the samplingRate attribute which is on the Device or

Component elements.

The PublishingInterval for a Subscription controls how frequently Notifications are returned to

the Client. If this value is longer than SamplingInterval then the Server will buffer changes and

return multiple Notifications in one message.

An Event Subscription can be created with the following steps:

 Browse the Address Space and read the NodeIds for the Devices or Components of

interest;

 Create a Subscription;

 Create a MonitoredItem for each Device or Component of interest;

 Select the fields to return for each event;

 Specify additional filter criteria for the events to return;

 Tell the Server to send Notifications when the state of one or more events occur;

Events in OPC UA propagate up the HasNotifier hierarchy. This means subscribing to a parent

Node in a hierarchy (i.e. a Device) will request events for all Components under that Node. If a

Client wants to receive all events for all devices it can subscribe to the Server node.

Each Condition Event is a snapshot of the MTConditionType Object. The Client must select the

fields from the Condition that it wishes to receive in the update by specifying the BrowsePath (a

sequence of BrowseNames). The values of the variables in the address space contain the values

from the last event sent. These values can be subscribed to like any other DataType but there is

no guarantee that the Client will receive a synchronized snapshot of the Condition.

Table 9 provides an example of an Event produced from the following Condition element:

MTConnect-OPC UA Companion Specification – Version 1.0 - Final Draft 29

<Fault type="MOTION_PROGRAM" dataitemid="cc2" sequence="25" qualifier=”HIGH” nativeCode="PR1123"

timestamp="...">Syntax error on line 107</Fault>

Table 9 – An Example Condition Event

BrowsePath Value Notes

<blank> <server defined> Identifies the Condition Node in the Address space.

EventId <server defined> Equivalent to the sequence number but an opaque value.

ConditionName MotionProgram From the name attribute,

ConditionClassName MotionProgram From the type attribute.

Message Syntax error on line 107 The contents of the Condition element.

Time … The timestamp attribute.

Severity 700 Inferred from the current state.

CurrentState Fault From the QName.

ActiveState/Id True Inferred from the QName.

LimitState/CurrentState High From the qualifier attribute.

NativeCode PR1123 From the nativeCode attribute.

A Client can request any or all of the fields defined by the children of the MTConditionType

ObjectType.

OPC UA Event Filters allow for SQL like filtering on events. For example, the following filter

would select only those events for MOTION_PROGRAMS in the Fault state:

(ConditionClassName = ‘MotionProgram’) AND (CurrentState = ‘Fault’)

OPC UA does not define syntax for filters. Instead it provides a generic structure that stores a

pre-parsed expression tree. Client applications are free to use whatever syntax they feel is

appropriate.

